| 1. NO CALCULATORS ALLOWED 2. UNLESS OTHERWISE INSTRUCTED, SIMPLIFY ALL ANSWERS COMPLETELY 3. SHOW PROPER & CONCISE PRECALCULUS LEVEL WORK TO JUSTIFY YOUR ANSWERS | |---| | [FILL IN THE BLANKS] | | co-ordinates $(-12, 11, -9)$, you are in octant $($ | | [b] If $\vec{a} \cdot \vec{b} = 9$, then the angle between \vec{a} and \vec{b} is ACUTE \vec{D} . | | [c] The equation of the xz – trace of the sphere $(x+2)^2 + (y-3)^2 + (z-1)^2 = 19$ is $(x+2)^2 + (z-1)^2 = 10$. | | Three forces act on an object. Force 1 has magnitude 8 newtons and direction angle 60°. Force 2 has magnitude 12 newtons and direction angle 150°. Force 3 has magnitude 5 newtons and direction angle 270°. | | [a] Find the resultant of the three forces. Write your answer as a linear combination of \vec{i} and \vec{j} . 8 $\langle \cos 60^{\circ}, \leq \ln 60^{\circ} \rangle$ + $12 \langle \cos 150^{\circ}, \leq \ln 150^{\circ} \rangle$ + $5 \langle \cos 270^{\circ}, \sin 270^{\circ} \rangle$ = $\langle 4, 4\sqrt{3} \rangle$, + $\langle -6\sqrt{3}, 6 \rangle$ + $\langle 0, -5 \rangle$ = $\langle 4 - 6\sqrt{3}, 1 + 4\sqrt{3} \rangle$ The formula formula \vec{i} is the formula \vec{i} in | | The resultant of the three forces acted on the object as it moved from $(-3, 2)$ to $(-1, -4)$, where all coordinates are measured in meters. Find the work done, and give appropriate units for your answer. $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | For the vectors shown below, sketch the vector $2\vec{p} - \frac{1}{2}\vec{w}$. D FOR THIS FORMAT/EQUATION SCORE: _____ / 2 PTS Let $$\vec{d} = 6\vec{j} - 2\sqrt{3}\vec{i}$$. [a] Find a vector \vec{s} in the <u>opposite</u> direction as \vec{d} , such that $||\vec{s}|| = 3$. Write your answer in component form. $$-\frac{3}{\|J\|}J = -\frac{3}{\sqrt{12+36}}\langle -2\sqrt{3}, 6\rangle$$ $$= -\frac{3}{\sqrt{48}}\langle -2\sqrt{3}, 6\rangle = \langle \frac{3}{2}, -\frac{3\sqrt{3}}{2} \rangle 0$$ [b] If \vec{p} is a vector with magnitude 6 which makes an angle of 135° with \vec{d} , find $\vec{p} \cdot \vec{d}$. [c] Find the direction angle of \vec{d} . $$D_{2}=\pi + \tan^{-1}\frac{6}{23}$$ $$= \pi + \tan^{-1}(-\sqrt{3}) = \pi - \frac{3}{3} = \frac{2\pi}{3}$$ $$0$$